Blog-Layout

Kleiner Einstieg in die Thematik der funktionalen Sicherheit

Andreas Schunkert • Okt. 07, 2024

Funktionale Sicherheit ist ein entscheidender Aspekt in der Entwicklung sicherheitskritischer Systeme, insbesondere in Branchen wie Automobil, Luftfahrt und Maschinenbau. Sie bezieht sich auf die Fähigkeit eines Systems, sicher zu funktionieren, selbst in der Präsenz von Störungen oder Fehlfunktionen. Ein zentrales Konzept in diesem Kontext ist der Performance Level (PL), der sowohl die erforderlichen Sicherheitsanforderungen als auch die tatsächliche Sicherheitsleistung eines Systems beschreibt.

Performance Level Required (PLr)


Ermittlung des PLr

Der Performance Level Required (PLr) wird durch eine umfassende Risikoanalyse ermittelt. Dieser Prozess umfasst mehrere Schritte:


  • Identifikation von Gefahren: Zunächst müssen alle potenziellen Gefahren identifiziert werden, die mit dem System verbunden sind. Dies beinhaltet sowohl mechanische als auch elektrische Gefahren. Eine gute Hilfestellung, welche Gefahren alle betrachtet werden sollen, bietet der Anhang I der Maschinenrichtlinie mit den darin enthaltenen Allgemeinen Sicherheits- und Gesundheitsschutzanforderungen.


  • Risikoabschätzung: Jede identifizierte Gefahr wird hinsichtlich der Schwere einer möglichen Verletzung beim Eintritt, der Häufigkeit und der Möglichkeit der Vermeidung bewertet. Hierbei kommen Methoden wie die Fehlerbaumanalyse (FTA) oder die Gefährdungsanalyse (HAZOP) zum Einsatz.


  • Klassifizierung: Basierend auf der Risikoabschätzung wird der PLr in eine der Kategorien (PLa bis PLe) eingestuft, wobei PLa die niedrigste und PLe die höchste Sicherheitsanforderung darstellt. Die Einstufung erfolgt nach den Kriterien der Normen wie ISO 13849 oder IEC 61508, wobei letztere statt eines Performance Levels (PL) einen Safety Integrity Level (SIL) beschreibt.


  • Anforderungen an die Sicherheitsfunktionen: Der PLr legt fest, welchen Performance Level die implemetierten Sicherheitsfunktionen aufweisen müssen, um die identifizierten Risiken ausreichend zu minimieren.


Tatsächlicher Performance Level (PL)


Berechnung des PL

Nachdem der PLr definiert wurde, muss der tatsächliche Performance Level (PL) des Systems ermittelt werden. Dies geschieht durch die Bewertung der implementierten Sicherheitsfunktionen und ihrer Wirksamkeit:


  • Analyse der Sicherheitsfunktionen: Zunächst müssen die Sicherheitsfunktionen, die zur Erfüllung des PLr implementiert wurden, detailliert analysiert werden. Dazu gehört die Betrachtung der Funktionsweise, der Redundanz (des Aufbaus der Sicherheitsfunktion) und der Zuverlässigkeit der Systeme.


  • Bestimmung der Sicherheitsmerkmale: Jedes System hat spezifische Sicherheitsmerkmale, wie Fehlertoleranz, Diagnosefähigkeit und die Möglichkeit zur Fehlererkennung. Diese Merkmale werden quantifiziert, um die Leistungsfähigkeit der Sicherheitsfunktionen zu bewerten.


  • Berechnung der Sicherheitswerte: Anhand von statistischen Daten und Erfahrungswerten wird die Wahrscheinlichkeit von Fehlfunktionen ermittelt. Diese Werte fließen in die Berechnung des PL ein. Die Berechnung erfolgt typischerweise durch die Formel:


PL = f(MTTFd, SFF, DC)

 

Hierbei stehen MTTFd (Mean time to failure dangerous), SFF (Safe Failure Fraction) und DC (Diagnostic Coverage) für die relevanten Parameter zur Berechnung der Sicherheitsleistung.


  • Überprüfung und Validierung: Der berechnete PL muss mit dem PLr abgeglichen werden. Wenn der PL den Anforderungen des PLr entspricht oder diese übersteigt, gilt das System als sicher. Andernfalls sind weitere Maßnahmen erforderlich.


Fazit


Die funktionale Sicherheit ist ein komplexes, aber essentielles Konzept, das eine systematische Herangehensweise zur Identifizierung, Bewertung und Minimierung von Risiken erfordert. Die korrekte Ermittlung des Performance Level Required (PLr) und die anschließende Berechnung des tatsächlichen Performance Levels (PL) sind entscheidend, um die Sicherheit von Systemen zu gewährleisten. Unternehmen müssen sicherstellen, dass sie die richtigen Methoden und Normen anwenden, um die Sicherheit ihrer Produkte und Systeme zu garantieren.

 

Wir von Cobot Safety stehen Ihnen gerne jederzeit mit Rat und Tat zur Seite, um Sie dabei zu unterstützen, Ihre Maschine arbeitsschutztechnisch sicher und auch rechtssicher auszulegen. Wir unterstützen Sie auch gerne im Rahmen einer Betriebsbegehung, zeigen Ihnen dabei mögliche arbeitsschutztechnische Mängel auf und geben Empfehlungen zur Behebung der Mängel.

Kontaktieren Sie uns gerne!


von Andreas Schunkert 30 Okt., 2024
In diesem Artikel betrachten wir die Historie der Maschinenrichtlinie und die wesentlichen Änderungen, die die Maschinenverordnung mit sich bringt, sowie deren Auswirkungen auf Maschinenbauer und Roboterintegratoren.
von Andreas Schunkert 09 Okt., 2024
Auch der Betreiber einer Maschine hat gewisse Pflichten, welche ihm durch das ArbSchG und die Betriebssicherheitsverordnung auferlegt werden. In diesem Artikel, werden diese Pflichten und der erwartete Umgang damit thematisiert.
von Andreas Schunkert 07 Okt., 2024
Der Beitrag gibt einen kleinen Einstieg in das Thema der funktionalen Sicherheit und zeigt den Unterschied und die Zusammenhänge zwischen dem Performance Level Required und dem Performance Levele Reached auf.
von Andreas Schunkert 09 Jan., 2024
Robotik erhält einen neuen Anstrich Seit 2011 und damit seit 12 Jahren ist die aktuelle Fassung der ISO 10218 in Ihren beiden Teilen erhältlich. Diese nach dem EU Harmonisierungskonzept auch als EN ISO 10218 übernommene Norm ist damit seit vielen Jahren der Anker der Robotik weltweit. In dieser Norm werden im Teil 1 die sicherheitstechnischen Anforderungen an Industrieroboter definiert und im Teil 2 erhalten Integratoren von Robotiklösungen Anweisungen, worauf sie bei der Integration von Roboterapplikationen zu achten haben. Die ISO 10218 ist daher in ihren beiden Teilen ein nicht weg zu denkender Bestsandteil der Automatisierung. Jedoch hat dich in den letzten 12 Jahren auch sehr viel auf dem Robotikmarkt getan. Neue Player sind auf dem Markt erschienen, andere haben sich verabschiedet. Neue Techniken, neue Ansätze, neue Funktionen, neue Sicherheitskonzepte usw. Der Markt im Bereich der Robotik ist einer der am stärksten wachsenden und damit auch ein Bereich, der ständigen Neuerungen und Anpassungen unterliegt. Die Anpassung der ISO 10218 auf diese neuen Gegebenheiten ist damit längst überfällig. 2024 wird es dann auch endlich so weit sein. Mit coronabedingten Verzögerungen wird bis Mitte des Jahres die Neufassung der ISO 10218 erwartet. Hervorheben muss man hier, dass es sich tatsächlich um eine Neufassung und nicht nur um eine Überarbeitung handelt, was speziell am Teil 2 der neuen Norm ersichtlich wird. In der neuen ISO 10218-2 wird dann nämlich nicht nur der Inhalte der alten ISO 10218-2, sondern zusätzlich noch die Inhalte der ISO/TS 15066 – Kollaborative Roboter ISO/TR 20218-1 – Greiforgane ISO/TR 20218-2 – Manuelle Be- und Entladestationen zu finden sein. Der neue Teil 2 wird damit auf ein mächtiges Dokument mit mehr als 250 Seiten anwachsen, welche es für Integratoren und Maschinenbauer in Zukunft umzusetzen gilt. Aber auch der Teil 1 wird sich in seiner Neufassung erheblich von seiner Vorgängerversion unterscheiden. Es wurden neue Strukturierungen geschaffen, Erkenntnisse der letzten 10-15 Jahren sind eingeflossen, es werden Unter-scheidungen gemacht, wo es vorher keine gab und die Frage nach dem Performance Level von Sicherheitsfunktionen wird weit komplexer als sie es vorher war. Änderungen in der ISO 10218-1 Natürlich können in diesem Artikel nicht sämtliche Änderungen im Teil 1 aufgezeigt werden. Aber die gravierendsten und wichtigsten Neuerungen wollen wir hier kurz darlegen. Komplette Neustrukturierung des Abschnitts 5 – „Design Anforderungen und Schutzmaßnahmen “ Neuer Anhang mit der Darstellung der verschiedenen Räume rund um einen Roboter Neue Anlage zur Ermittlung des benötigten PL für verschiedene Sicherheitsfunktionen Unterscheidung in zwei Roboterklassen und daraus folgenden unterschiedlichen Perfomance Level sowie unterschiedliche benötigte Sicherheitsfunktionen Neue verpflichtende Sicherheitsfunktionen Normal Stop/Operational Stop Start Interlock Restart Interlock Speziell die neu hinzugekommenen Sicherheitsfunktionen bedürfen einiger Erläuterungen, da man sich hier sicher erst einmal fragt, wozu diese dienen. Alle drei neuen Sicherheitsfunktionen wurden deshalb in die ISO 10218-1 mit aufgenommen, weil diese Funktion von der Maschinenrichtlinie (MRL) gefordert wird. Eine Harmonisierung ohne diese Funktionen in der neuen Norm zu berücksichtigen wäre daher voraussichtlich fehlgeschlagen. Die Normal Stop Funktion spiegelt letztlich die Anforderung wieder, eine Anlage auszuschalten, unbeobachtet zurück lassen zu können und dabei sicher zu stellen, dass die Anlage nicht aus irgend einem Grund wieder anläuft. Oft wird dies z.Z. mit der Betätigung des Not-Halt-Tasters sicher gestellt. Wer kennt es nicht - Der Mitarbeiter geht ins Wochenende und betätigt davor erst einmal den Not-Halt um sicher zu sein, dass die Anlage übers Wochenende nicht plötzlich unerwartet anläuft. Da ein Not-Halt-Taster und eine Not-Halt-Funktion aber nur für Notfälle und nicht für einen regelmäßigen Gebrauch vorgesehen ist, wird von der MRL eben eine solche Normal Stop Funktion gefordert. Der Start Interlock soll sicherstellen, dass ein Roboter nach dem Einschalten oder dem Wiederherstellen der Spannungsversorgung nicht sofort anläuft. Es muss hier erst eine bewusste Handlung durchgeführt werden, bevor sich der Roboter bewegt. Der Restart Interlock wird z.B. bei der Betriebsartumschaltung benötigt und stellt sicher, dass ein Roboter z.B. nach dem Umschalten von Manuell auf Automatik nicht direkt im Automatikmodus anläuft, sondern auch hier zuerst eine bewusste Handlung durchgeführt werden muss, damit die Bewegungen des Automatik-programms gestartet werden. Änderungen in der ISO 10218-2 Wie oben bereits erläutert, wächst der neue Teil 2 der ISO 10218 auf etwa das Dreifache des Inhalts der Vorgängerversion aus dem Jahr 2011. Dies alleine wird es, für einen Integrator einer Roboterapplikation, in Zukunft sicher nicht einfach machen alle normativen Vorgaben zu kennen und umzusetzen. Jedoch ist die Robotik leider über die letzten Jahre immer komplexer geworden, weswegen es unabwendbar war, dass sich dies im Inhalt der ISO 10218 widerspiegelt. Ein wenig Hilfe soll jedoch ein weiteres Dokument bringen, welches ebenfalls im Laufe des Jahres 2024 veröffentlicht werden soll. Der ISO/TR 20218-3 soll bei komplexen und schwer verständlichen Themen der ISO 10218-2 noch einmal weitere Infos und Erläuterungen geben und dem Integrator hier dabei helfen, seine Applikation entsprechend der Norm umzusetzen. Ein Integrator ist mit der Veröffentlichung der neuen ISO 10218-2 gut beraten, entsprechende Weiterbildungen zu der neuen Norm zu besuchen oder einen externen Experten ein prüfendes Auge auf die Sicherheit seiner Applikation werfen zu lassen. Der neue ISO/TR 20218-3 Wie bereits erläutert, hat das ISO-Normungsgremium TC 299 WG3 neben der neuen ISO 10218-1 und -2 noch einen neuen ISO/TR 20218-3 erarbeitet, welcher Hilfestellung im Umgang und der Anwendung mit dem Teil 2 der ISO 10218 geben soll. In diesem TR wird in einzelnen Abschnitten noch einmal explizit auf die folgenden Themen eingegangen: Normal Stop / Operational Stop Manual Mode und High Speed manual mode Sicherheitsfunktionen Single Point of Control Start- und Restartinterlock Reset einer Sicherheitsfunktion Mode-Activation vs. Mode-Selection Räume und Modi – Der Sicherheitsbereich kann dynamisch sein Cybersecurity Weitere Hilfestellung zur Thematik rund um die Kraft- und Leistungsbegrenzung Man stellt bei der Betrachtung der vorgenannten Themen sehr schnell fest, dass auch in diesem Dokument viele Informationen enthalten und veröffentlicht werden. Es ist daher jedem Integrator von Robotikapplikationen absolut zu empfehlen, in Zukunft nicht nur die ISO 10218-2 sondern auch diesen neuen ISO/TR 20218 griffbereit zu haben.
von Andreas Schunkert 10 Okt., 2023
Risikobeurteilungen sind ein wichtiger Bestandteil des Maschinenbaus und spielen eine entscheidende Rolle bei der Gewährleistung der Sicherheit und dem Gesundheitsschutz am Arbeitsplatz. Durch eine systematische Bewertung und Analyse von potenziellen Gefährdungen können Unternehmen Risiken minimieren, Arbeitsunfälle verhindern und die Einhaltung von Gesetzen, Richtlinien und Vorschriften gewährleisten. In diesem Artikel wird wir die Bedeutung der Risikobeurteilung von Maschinen noch einmal herausgestellt und verdeutlicht.
von Andreas Schunkert 26 Sept., 2023
2004 und damit vor fast 20 Jahren wurde der erste kollaborative Roboter, der LBR 3 verkauft. Da sollte man doch meinen, dass wir heute im Jahr 2023 kollaborative Roboter sicher einsetzen können und es umfängliche Regeln gibt, welche den Einsatz in den unterschiedlichsten Applikationen genau definieren. Leider ist es jedoch nicht ganz so. Zwar wurde 2016 (12 Jahre nach dem ersten Cobot auf dem Markt) die ISO TS 15066, mit Regeln für die Anwendung von kollaborativen Roboterapplikationen, veröffentlicht. Jedoch unterscheidet diese in ihrer Betrachtung nicht wirklich Applikationen bei denen ein Cobot tatsächlich 24/7 Seite an Seite mit einem Mitarbeiter zusammen arbeitet und solche Anwendungen, bei denen der Roboter zwar ohne Schutzzaun arbeitet aber eigentlich weit und breit kein Mitarbeiter in der Nähe ist. Schaut man in die ISO 12100 - Sicherheit von Maschinen - Risikobeurteilung und Risikominderung, so findet man dort, dass sich das Risiko aus den Faktoren "Schwere der möglichen Verletzung" und der "Wahrscheinlichkeit des Auftretens" zusammen setzt. Im letzteren Faktor sind die Aufenthaltsdauer im Gefahrenbereich, die Frequenz mit der man in den Gefahrenbereich eintritt und die Möglichkeit der Vermeidung des Schadens inkludiert. Schaut man nun in die ISO TS 15066, so findet sich dort in der Anlage A eine Auflistung an Kräften und Drücken welche den Schmerzeintritt definieren. Diese Werte werden nun seit Jahren für alle kollaborierenden Applikationen gleicher-maßen heran gezogen und als Obergrenze gesetzt. Ganz gleich ob die Applikation eine hohe Wahrscheinlichkeit einer Kollision zwischen Mensch und Roboter aufweist, da sich ein Mitarbeiter im normalen Arbeitsprozess ständig in der Nähe des Roboters aufhält, oder ob die Wahrscheinlichkeit eher gering ist, da der Cobot für sich alleine arbeitet und nur alle paar Stunden mal ein Mitarbeiter vorbei schaut und z.B. ein neues Tray bei einer Maschinenbeladung einlegt. Das Betrachten beider Applikationen mit den gleichen Maximalwerten für Kraft und Druck kommt mit Hinblick auf die oben beschriebene Ermittlung des Risikos nach ISO 12100 dem berühmten Vergleichen von Äpfel und Birnen gleich! Nehmen Sie einmal an, sie bewerten die Klemmung einer Hand nach der oben genannten ISO TS 15066. Nachfolgend ist hierzu ein Auszug aus der Anlage 1 dargestellt. Wie Sie sehen, wird hier die maximale Kraft mit 140N für eine Klemmung und einem transienten Faktor von 2 beziffert. Der transiente Faktor bezieht sich dabei auf eine zulässige Überhöhung in den ersten 0,5 Sekunden. Es dürfte so also bei einer Messung in einer Applikation 280N in den ersten 0,5 Sekunden auftreten und 140N nach 0,5 Sekunden. Liegt einer der beiden gemessenen Werte über diesen Werten so wäre die Applikation nach dieser Technischen Spezifikation (TS) als nicht sicher zu bewerten.
Share by: